

CAT5113

100-Tap Digitally Programmable Potentiometer (DPP™)

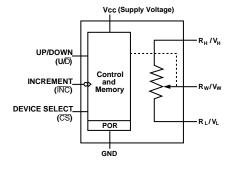
FEATURES

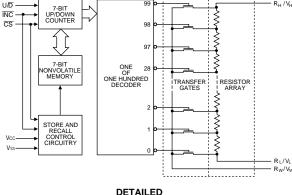
- 100-position linear taper potentiometer
- Non-volatile EEPROM wiper storage
- 10nA ultra-low standby current
- Single supply operation: 2.5V-6.0V
- Increment Up/Down serial interface
- \blacksquare Resistance values: 1kΩ ,10kΩ , 50kΩ and 100kΩ
- Available in PDIP, SOIC, TSSOP and MSOP packages

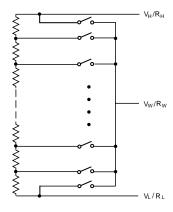
APPLICATIONS

- Automated product calibration
- Remote control adjustments
- Offset, gain and zero control
- **■** Tamper-proof calibrations
- Contrast, brightness and volume controls
- Motor controls and feedback systems
- Programmable analog functions

DESCRIPTION

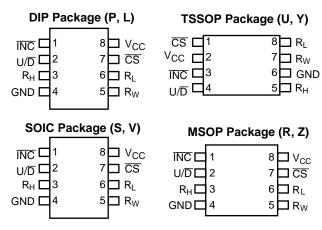

The CAT5113 is a single digitally programmable potentiometer (DPP™) designed as a electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.


The CAT5113 contains a 100-tap series resistor array connected between two terminals R_H and R_L . An up/down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_W . The wiper setting, stored in nonvolatile memory, is not lost when the device is powered down and is automatically reinstated when power is returned. The wiper can be adjusted to test


new system values without effecting the stored setting. Wiper-control of the CAT5113 is accomplished with three input control pins, \overline{CS} , U/\overline{D} , and \overline{INC} . The \overline{INC} input increments the wiper in the direction which is determined by the logic state of the U/\overline{D} input. The \overline{CS} input is used to select the device and also store the wiper position prior to power down.

The digitally programmable potentiometer can be used as a three-terminal resistive divider or as a two-terminal variable resistor. DPPs bring variability and programmability to a wide variety of applications including control, parameter adjustments, and signal processing.

FUNCTIONAL DIAGRAM



ELECTRONIC POTENTIOMETER IMPLEMENTATION

GENERAL

PIN CONFIGURATION

PIN DESCRIPTIONS

INC: Increment Control Input

The $\overline{\text{INC}}$ input moves the wiper in the up or down direction determined by the condition of the U/\overline{D} input.

U/D: Up/Down Control Input

The U/ \overline{D} input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal.

RH: High End Potentiometer Terminal

 $R_{\rm H}$ is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the $R_{\rm L}$ terminal. Voltage applied to the $R_{\rm H}$ terminal cannot exceed the supply voltage, $V_{\rm CC}$ or go below ground, GND.

Rw: Wiper Potentiometer Terminal

 R_W is the wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, \overline{INC} , U/\overline{D} and \overline{CS} . Voltage applied to the R_W terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

RL: Low End Potentiometer Terminal

 R_{L} is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the R_{H} terminal. Voltage applied to the R_{L} terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. R_{L} and R_{H} are electrically interchangeable.

CS: Chip Select

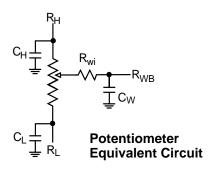
The chip select input is used to activate the control input

PIN FUNCTIONS

Pin Name	Function			
ĪNC	Increment Control			
U/D	Up/Down Control			
RH Potentiometer High Terminal				
GND Ground				
Rw Potentiometer Wiper Termina				
R _L Potentiometer Low Termina				
CS Chip Select				
V _{CC}	Supply Voltage			

of the CAT5113 and is active low. When in a high state, activity on the \overline{INC} and U/\overline{D} inputs will not affect or change the position of the wiper.

DEVICE OPERATION


The CAT5113 operates like a digitally controlled potentiometer with R_H and R_L equivalent to the high and low terminals and R_W equivalent to the mechanical potentiometer's wiper. There are 100 available tap positions including the resistor end points, R_H and R_L . There are 99 resistor elements connected in series between the R_H and R_L terminals. The wiper terminal is connected to one of the 100 taps and controlled by three inputs, \overline{INC} , U/\overline{D} and \overline{CS} . These inputs control a sevenbit up/down counter whose output is decoded to select the wiper position. The selected wiper position can be stored in nonvolatile memory using the \overline{INC} and \overline{CS} inputs.

With $\overline{\text{CS}}$ set LOW the CAT5113 is selected and will respond to the U/ $\overline{\text{D}}$ and $\overline{\text{INC}}$ inputs. HIGH to LOW transitions on $\overline{\text{INC}}$ will increment or decrement the wiper (depending on the state of the U/ $\overline{\text{D}}$ input and seven-bit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. The value of the counter is stored in nonvolatile memory whenever $\overline{\text{CS}}$ transitions HIGH while the $\overline{\text{INC}}$ input is also HIGH. When the CAT5113 is powered-down, the last stored wiper counter position is maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the counter is set to the value stored.

With $\overline{\text{INC}}$ set low, the CAT5113 may be de-selected and powered down without storing the current wiper position in nonvolatile memory. This allows the system to always power up to a preset value stored in nonvolatile memory.

OPERATION MODES

ĪNC	CS	U/D	Operation	
High to Low	Low	ow High Wiper toward F		
High to Low	Low	Low Wiper toward L		
High	Low to High	Х	Store Wiper Position	
Low	Low to High	Х	No Store, Return to Standby	
Х	High	Х	Standby	

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	
V _{CC} to GND	0.5V to +7V
Inputs	
CS to GND	0.5V to V _{CC} +0.5V
ĪNC to GND	0.5V to V _{CC} +0.5V
U/D to GND	0.5V to V _{CC} +0.5V
H to GND	0.5V to V _{CC} +0.5V
L to GND	0.5V to V _{CC} +0.5V
W to GND	0.5V to V _{CC} +0.5V

Operating Ambient Temperature

1 0	•	
Commercial (('C' or Blank suffix)	0°C to +70°C
Industrial ('I'	suffix)	40°C to +85°C
Junction Tempera	ature	+150°C
Storage Tempera	ature	-65°C to +150°C
Lead Soldering (*	10 sec max)	+300°C

^{*} Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Test Method	Min	Тур	Max	Units
V _{ZAP} ⁽¹⁾	ESD Susceptibility	MIL-STD-883, Test Method 3015	2000			Volts
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	JEDEC Standard 17	100			mA
T _{DR}	Data Retention	MIL-STD-883, Test Method 1008	100			Years
N _{END}	Endurance	MIL-STD-883, Test Method 1003	1,000,000			Stores

DC Electrical Characteristics: $V_{CC} = +2.5V$ to +6.0V unless otherwise specified Power Supply

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CC}	Operating Voltage Range		2.5		6.0	V
I _{CC1}	Supply Current (Increment)	$V_{CC} = 6V, f = 1MHz, I_{W}=0$			100	μΑ
		$V_{CC} = 6V, f = 250kHz, I_{W} = 0$			50	
I _{CC2}	Supply Current (Write)	Programming, $V_{CC} = 6V$			1	mA
		$V_{CC} = 3V$			500	μΑ
ISB ₁ (2)	Supply Current (Standby)	CS=V _{CC} -0.3V		0.01	1	μА
		U/D, INC=V _{CC} -0.3V or GND				

Logic Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{IH}	Input Leakage Current	$V_{IN} = V_{CC}$			10	μΑ
I _{IL}	Input Leakage Current	$V_{IN} = 0V$			-10	μΑ
V _{IH1}	TTL High Level Input Voltage	$4.5V \le V_{CC} \le 5.5V$	2		V _{CC}	V
V _{IL1}	TTL Low Level Input Voltage		0		0.8	V
V _{IH2}	CMOS High Level Input Voltage	2.5V ≤ V _{CC} ≤ 6V	V _{CC} x 0.7		V _{CC} + 0.3	V
V _{IL2}	CMOS Low Level Input Voltage		-0.3		V _{CC} x 0.2	V

3

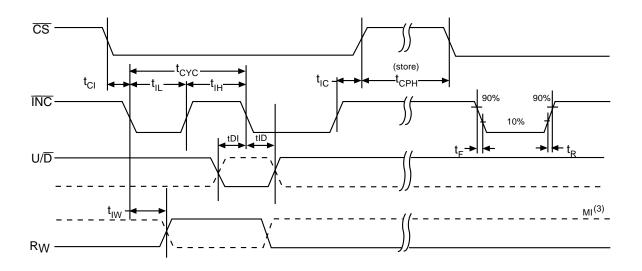
NOTES:

- (1) This parameter is tested initially and after a design or process change that affects the parameter.
- (2) Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} + 1V
- (3) I_W=source or sink
- (4) These parameters are periodically sampled and are not 100% tested.

Potentiometer Parameters

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance	-01 Device		1		
		-50 Device		50		kΩ
		-50 Device		50		
		-00 Device		100		
	Pot Resistance Tolerance				±20	%
V _R H	Voltage on R _H pin		0		Vcc	V
V _{RL}	Voltage on R _L pin		0		Vcc	V
	Resolution			1%		%
INL	Integral Linearity Error	$I_W \le 2\mu A$		0.5	1	LSB
DNL	Differential Linearity Error	$I_W \le 2\mu A$		0.25	0.5	LSB
R _{Wi}	Wiper Resistance	V _{CC} = 5V, I _W = 1mA			400	Ω
		V _{CC} = 2.5V, I _W = 1mA			1	kΩ
lw	Wiper Current				1	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/ºC
TC _{RATIO}	Ratiometric TC				20	ppm/ºC
R _{ISO}	Isolation Resistance			TBD		Ω√
V _N	Noise	100kHz / 1kHz		8/24		nV/ Hz
C _H /C _L /C _W	Potentiometer Capacitances			8/8/25		pF
fc	Frequency Response	Passive Attenuator, 10kΩ		1.7		MHz

AC CONDITIONS OF TEST

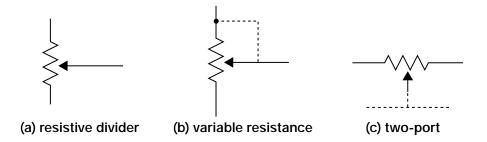

V _{CC} Range	$2.5V \le V_{CC} \le 6V$
Input Pulse Levels	0.2V _{CC} to 0.7V _{CC}
Input Rise and Fall Times	10ns
Input Reference Levels	0.5V _{CC}

AC OPERATING CHARACTERISTICS:

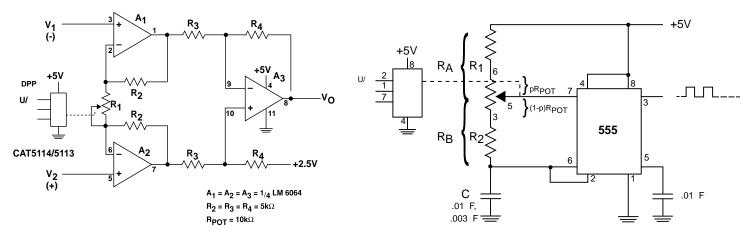
 V_{CC} = +2.5V to +6.0V, V_{H} = V_{CC} , V_{L} = 0V, unless otherwise specified

Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Units
t _{Cl}	CS to INC Setup	100	_	_	ns
t _{DI}	U/D to INC Setup	50	_	_	ns
t _{ID}	U/D to INC Hold	100	_	_	ns
t _{IL}	INC LOW Period	250	_	_	ns
t _{IH}	INC HIGH Period	250	_	_	ns
t _{IC}	INC Inactive to CS Inactive	1	_	_	μs
t _{CPH}	CS Deselect Time (NO STORE)	100	_	_	ns
t _{CPH}	CS Deselect Time (STORE)	10	_	_	ms
t _{IW}	INC to V _{OUT} Change	_	1	5	μs
t _{CYC}	INC Cycle Time	1	_	_	μs
$t_{R,} t_{F}^{(2)}$	INC Input Rise and Fall Time	_	_	500	μs
t _{PU} ⁽²⁾	Power-up to Wiper Stable	_	_	1	msec
t _{WR}	Store Cycle	_	5	10	ms

A. C. TIMING

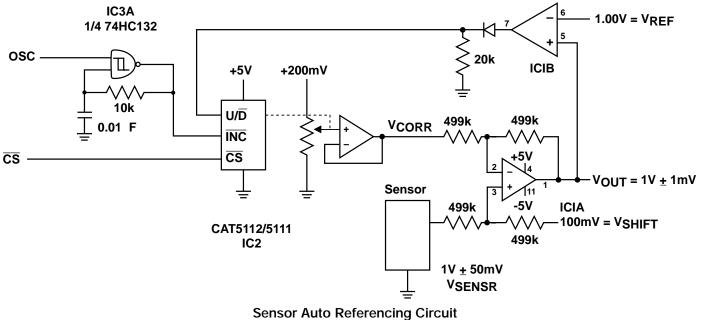


- (1) Typical values are for $T_A=25\,^{\circ}C$ and nominal supply voltage.
- (2) This parameter is periodically sampled and not 100% tested.
- (3) MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

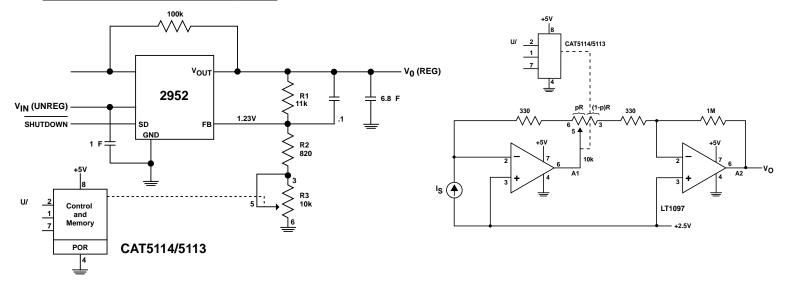

5

APPLICATIONS INFORMATION

Potentiometer Configurations

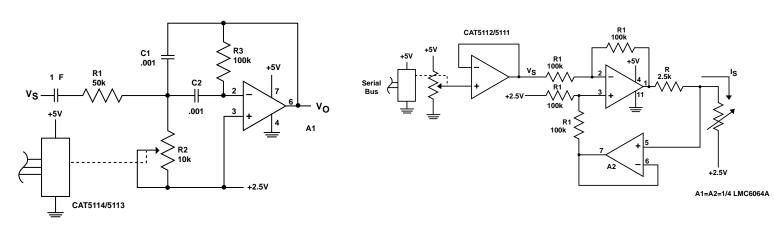


Applications

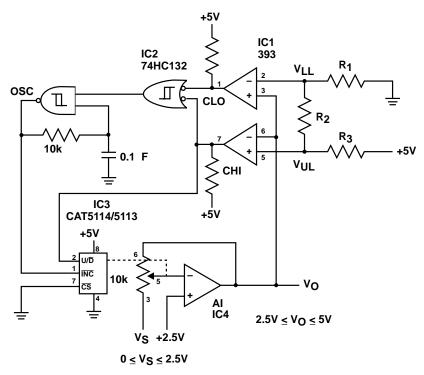


Programmable Instrumentation Amplifier

Programmable Sq. Wave Oscillator (555)

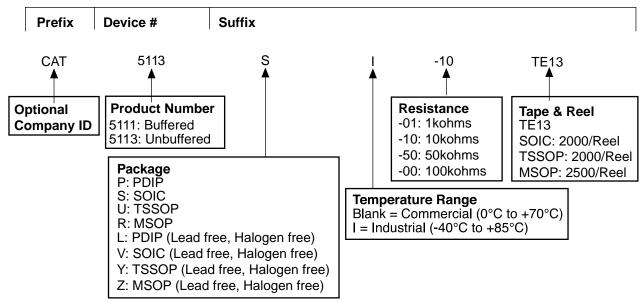


APPLICATIONS INFORMATION


Programmable Voltage Regulator

Programmable I to V convertor

Programmable Bandpass Filter


Programmable Current Source/Sink

Automatic Gain Control

7

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT5113 SI-10TE13 (SOIC, 10K Ohms, Industrial Temperature, Tape & Reel)

REVISION HISTORY

Date	Rev.	Reason		
10/9/2003	М	Revised Features		
		Revised DC Electrical Characteristics		
3/10/2004	N	Updated Potentiometer Parameters		
3/29/2004	0	Changed Green Package marking for SOIC from W to V		
4/02/2004	Р	Add 1KW version to data sheet		
4/8/2004	Q	Eliminated data sheet designation		
		Updated Tape and Reel specs in Ordering Information		

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE2 ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000

Fax: 408.542.1200 www.catsemi.com Publication #: 2009 Revison: Q Issue date: 4/8/04